Wireless Channel Trouble-Shooting
Contents
DISCLAIMER: This note is for reference only. I am not 100% sure of the accuracy of my note. If you find any mistakes/typos, feel free to contact me.
This note records some interesting issues that I met in wireless channel modeling 😄.
CIR, CFR (CSI) Conversion
Channel Impulse Response (CIR): \(h(t,\tau)\); Channel Frequency Response (CFR): \(H(t,f)\).
\(t\): time domain; \(\tau\): delay domain; \(f\): frequency domain.
Discrete Fourier Transform (DFT), Inverse Discrete Fourier Transform (IDFT) formula:
\[\begin{equation} \begin{cases} X[k]=\sum_{n=0}^{N-1}x[n]\exp\left(-\frac{\mathrm{j}2\pi kn}{N}\right)\\=\sum_{n=-\infty}^{\infty}x[n]\exp(-\mathrm j \omega n)|_{\omega=2\pi k/N}=X(e^{\mathrm j\omega})|_{\omega=2\pi k/N}\\ x[n]=\frac{1}{N}\sum_{k=0}^{N-1}X[k]\exp\left(\frac{\mathrm j 2\pi kn}{N}\right) \end{cases}. \label{eq:DFT} \end{equation} \]
Simple proof (Considering CIR/CFR at one time slot \(t\)):
Note that \(f_n=n\Delta f\), \(\tau_n=n\Delta t\), \(\Delta f\Delta t=1/N\). (Take a look at above DFT equations or time/frequency settings in MATLAB Fast Fourier Transform (fft) documentation example codes. )
We have CIR in below form:
\[h(t,\tau)=\sum_{n=0}^{N(t)-1}\alpha_n(t)\delta(\tau-\tau_n(t))\rightarrow \mathbf{h}=[\alpha_0(t),\ldots,\alpha_{N-1}(t)]. \]
Do DFT at \(k\) using \(\eqref{eq:DFT}\):
\[H(t,k)=\sum_{n=0}^{N(t)-1}\alpha_n(t)\exp(-\frac{\mathrm{j2\pi kn}}{N}). \]
Substitute \(k\) with \(f\) at the left of the equation, and substitute \(k\) with \(f/\Delta f\) at the right side of the equation, we have:
\[\begin{align} H(t,f)&=\sum_{n=0}^{N(t)-1}\alpha_n(t)\exp(-\frac{\mathrm{j2\pi f/\Delta f n}}{N}), \nonumber \\ &\xlongequal[]{\Delta f =1/(N\Delta t)}\sum_{n=0}^{N(t)-1}\alpha_n(t)\exp(-\mathrm{j2\pi f\tau_n(t)}). \label{eq:CFR} \end{align} \]
Channel State Information (CSI): \(H(t,f)\). (CSI is actually discrete time series of discrete CFR!)
- \(t\): CSI packet timestamp.
- \(f\): OFDM subcarrier frequency.
- Sometimes there is an extra space dimension in CSI Matrix which refers to Tx and Rx antenna pairs.
一个靠谱的知乎问题:在通信专业里的时域,频域,空域,角域到底都有怎样的联系呢?
Real Bandpass Signals, Equivalent Complex Baseband (Lowpass) Signals Conversion
Definition
Real bandpass signal:
\[\begin{align} s(t)=s_\text{I}(t)\cos(2\pi f_\text{c} t) -s_\text{Q}(2\pi f_\text{c} t). \end{align} \]
- \(s_\text{I}(t)\): lowpass in phase component.
- \(s_\text{Q}(t)\): lowpass quadrature component.
Many involved signals in wireless communication are always bandpass signal with carrier frequency \(f_\text{c}\) and bandwidth \(2B\), with \(2B \ll f_\text{c}\).
Equivalent complex baseband (lowpass) signal (real bandpass \(\rightarrow\) complex baseband):
\[\begin{align} u(t)=s_\text{I}(t)+\mathrm{j}s_\text{Q}(t). \end{align} \]
Complex baseband \(\rightarrow\) real bandpass:
\[\begin{align} \text{Real bandpass signal} &= \text{Re}\{\text{Complex baseband signal}\times\exp(\mathrm j2\pi f_\text{c}t)\}, \nonumber \\ s(t) &= \text{Re}\{u(t)\times\exp(\mathrm j2\pi f_\text{c}t)\}. \label{eq:complex2real} \end{align} \]
Two types of CIR: Real Bandpass Channel, Equivalent Complex Baseband (Lowpass) Channel
Channel impulse response
Real bandpass channel:
\[\begin{align} h_\text{real}(t,\tau)=\sum_{n=0}^{N(t)-1}\alpha_{n}(t)\delta(\tau-\tau_n(t)), \label{eq:ch_real} \end{align} \]
where:
\(t\) and \(\tau\): time domain and delay domain.
\(N(t)\): number of multipaths at time slot \(t\).
\(\alpha_n(t)\) and \(\tau_n(t)\): path loss (amplitude) and delay for \(n\)-th path at time slot \(t\).
Equivalent complex baseband (lowpass) channel:
\[\begin{align} h_\text{complex}(t,\tau)=\sum_{n=0}^{N(t)-1}\alpha_n(t)\exp(-\mathrm{j}\phi_n(t))\delta(\tau-\tau_n(t)), \label{eq:ch_complex} \end{align} \]
where \(\phi_n(t)=2\pi f_\text{c} \tau_n(t)-\phi_{\text{D}_n}(t)\) denotes the phase of \(n\)-th path at time slot \(t\), with \(\phi_{\text{D}_n}(t)\) denotes the Doppler phase shift.
Doppler phase shift \(\phi_{\text{D}_n}(t)\) is a function of Doppler frequency \(f_{\text{D}_n}(t)\): \(\phi_{\text{D}_n}(t)=\int_t 2\pi f_{\text{D}_n}(t) \mathrm d t\).
Doppler frequency shift \(f_{\text{D}_n}(t)=v\cos(\theta(t))/\lambda\) with motion velocity \(v\), angel of arrival relative to the direction of motion \(\theta(t)\) and signal wavelength \(\lambda\).
When \(\phi_{\text{D}_n}(t)=0\), equations \(\eqref{eq:ch_real}\) and \(\eqref{eq:ch_complex}\) are equivalent (See \(\eqref{eq:received_relation}\)).
Received signal
Transmitted signal (See definition):
Real: \(s(t)=s_\text{I}(t)\cos(2\pi f_\text{c}t)-s_\text{Q}(t)\cos(2\pi f_\text{c}t)\).
Complex baseband: \(u(t)=s_\text{I}(t)+\mathrm{j}s_\text{Q}(t)\).
Received signal:
- Real:
\[\begin{align} r(t) &= s(t) \otimes h_\text{real}(t,\tau) \nonumber \\ &= s(t) \otimes \sum_{n=0}^{N(t)-1}\alpha_{n}(t)\delta(\tau-\tau_n(t)) \nonumber \\ &=\sum_{n=0}^{N(t)-1}\alpha_{n}(t)s(t-\tau_n(t)). \label{eq:received_real} \end{align} \]
- Complex baseband:
\[\begin{align} u_r(t) &= u(t) \otimes h_\text{complex}(t,\tau)\nonumber \\ &=u(t) \otimes \sum_{n=0}^{N(t)-1}\alpha_n(t)\exp(-\mathrm{j}\phi_n(t))\delta(\tau-\tau_n(t)) \nonumber \\ &=\sum_{n=0}^{N(t)-1}\alpha_n(t)u(t-\tau_n(t))\exp(-\mathrm{j}\phi_n(t)) \nonumber\\ &=\sum_{n=0}^{N(t)-1}\alpha_n(t)u(t-\tau_n(t))\exp(-\mathrm{j}2\pi f_\text{c}\tau_n(t)+\phi_{\text{D}_n}(t)). \label{eq:received_complex} \end{align} \]
Here, \(\otimes\) denotes the convolution operation.
- Real:
Relationship (using \(\eqref{eq:complex2real}\)):
\[\begin{align} r(t)&=\text{Re}\left\{u_r(t)\exp(\mathrm{j}2\pi f_\text{c}t)\right\} \nonumber \\ &=\text{Re}\left\{\left[\sum_{n=0}^{N(t)-1}\alpha_n(t)u(t-\tau_n(t))\exp(-\mathrm{j}2\pi f_\text{c}\tau_n(t)+\phi_{\text{D}_n}(t))\right]\exp(\mathrm{j}2\pi f_\text{c}t)\right\} \nonumber \\ &=\text{Re}\left\{\sum_{n=0}^{N(t)-1}\alpha_n(t)u(t-\tau_n(t))\exp(\mathrm{j}2\pi f_\text{c}(t-\tau_n(t))+\phi_{\text{D}_n}(t))\right\}. \end{align} \]
Now consdiering zero doppler shift that \(\phi_{\text{D}_n}(t)=0\), the upper equation could be further reduced as follows:
\[\begin{align} &r(t)=\text{Re}\left\{\sum_{n=0}^{N(t)-1}\alpha_n(t)u(t-\tau_n(t))\exp(\mathrm{j}2\pi f_\text{c}(t-\tau_n(t)))\right\} \nonumber \\ &=\text{Re}\left\{\sum_{n=0}^{N(t)-1}\alpha_n(t)[s_\text{I}(t-\tau_n(t))+\mathrm{j}s_\text{Q}(t-\tau_n(t))]\left[\cos(2\pi f_\text{c}(t-\tau_n(t)))+\mathrm{j}\sin(2\pi f_\text{c}(t-\tau_n(t))))\right]\right\} \nonumber \\ &=\sum_{n=0}^{N(t)-1}\alpha_n(t)[s_\text{I}(t-\tau_n(t))\cos(2\pi f_\text{c}(t-\tau_n(t)))-s_\text{Q}(t-\tau_n(t))\sin(2\pi f_\text{c}(t-\tau_n(t)))] \nonumber\\ &=\sum_{n=0}^{N(t)-1}\alpha_{n}(t)s(t-\tau_n(t)). \label{eq:received_relation} \end{align} \]
How about considering channel with doppler phase shift \(\phi_{\text{D}_n}(t) \neq 0\)?
(To be updated after searching some articles…)
Wideband / Narrowband Channel Model
Narrowband Channel Model
To be updated (DDL: before 2023.10.18)… (Updated at 2023.10.18)
When delay spread \(T_\text{m}=\max_{i,j\in\{0,1,\ldots,N(t)-1\}}\{\tau_i-\tau_j\}\) and a manual signal period \(T=1/B\) satisfies that \(T_m \ll T\), we have \(u(t-\tau_i)\approx u(t-\tau_0)\approx u(t)\). Equation \(\eqref{eq:ch_complex}\) could be rewrote as:
\[\begin{align} h_\text{nb}(t,\tau)&\approx\sum_{n=0}^{N(t)-1}\alpha_n(t)\exp(-\mathrm{j}\phi_n(t))\delta(\tau-\tau_0). \label{eq:ch_complex_nb} \end{align} \]
Moreover, received signal could be rewrote as:
\[\begin{align} u_r(t)&=u(t)\otimes h_\text{nb}(t,\tau) \nonumber \\ &=\sum_{n}^{N(t)-1}\alpha_n(t)u(t-\tau_0)\exp(-\mathrm{j}\phi_n(t)) \nonumber \\ &\approx \sum_{n}^{N(t)-1}\alpha_n(t)u(t)\exp(-\mathrm{j}\phi_n(t)) \nonumber \\ &=u(t)\times \underbrace{\alpha_n(t)\exp(-\mathrm{j}\phi_n(t))}_{h_\text{nb}(t)} \end{align} \]
An interesting finding is that received signal \(u_r(t)\) can be expressed as a multiplication of \(u(t)\) and \(h_\text{nb}(t)\) approximately at narrowband (No need of convolution!), and \(h_\text{nb}(t)\) has similar expression with its CFR \(H(t,f)\) in \(\eqref{eq:CFR}\) if Doppler phase \(\phi_{\text{D}_n} = 0\).